
API Document Quality
for Resolving Deprecated APIs

Deokyoon Ko, Kyeongwook Ma
and Sooyong Park

Dept. of Computer Science & Engineering,

Sogang University, Seoul, South Korea

{maniara,shwarzes,sypark}@sogang.ac.kr

Suntae Kim
Dept. of Software Engineering,

Cheonbuk National University,

Jeonju Si, Jeollabuk Do, South Korea

stkim@jbnu.ac.kr

Dongsun Kim and Yves Le Traon
University of Luxembourg, SnT,

Luxembourg

{dongsun.kim,yves.letraon}@uni.lu

Abstract—

Using deprecated APIs often results in security vulnerability
or performance degradation. Thus, invocations to deprecated
APIs should be immediately replaced by alternative APIs. To
resolve deprecated APIs, most developers rely on API documents
provided by service API libraries. However, the documents often
do not have sufficient information. This makes many deprecated
API usages remain unresolved, which leads programs to vulner-
able states. This paper reports a result of studying document
quality for deprecated APIs. We first collected 260 deprecated
APIs of eight Java libraries as well as the corresponding API
documents. These documents were manually investigated to figure
out whether it provides alternative APIs, rationales, or examples.
Then, we examined 2,126 API usages in 249 client applications
and figured out whether those were resolved in the subsequent
versions. This study revealed that 1) 3.6 APIs was deprecated
and 3.6 deprecated APIs are removed from the library a month
on average, 2) only 61% of API documents provided alternative
APIs while rationale and examples were rarely documented, and
3) 62% of deprecate API usages in client applications were
resolved if the corresponding API documents provided alternative
APIs while 49% were resolved when the documents provided no
alternative APIs. Based on these results, we draw future directions
to encourage resolving deprecated APIs.

I. INTRODUCTION

Software developers use several libraries to boost devel-
opment productivity when writing their applications. This
establishes dependencies between an application and libraries.
Thus, when the APIs of a library is changed, the application
using the library should be also updated accordingly [8].

Some APIs are very frequently updated. By examining
Android release notes, 115 APIs are changed per month from
release 1.0 to 4.2 [2]. According to [5], API changes occur
due to the following reasons:

• Defects: security vulnerability and performance issues,
• Coding Style: it may result in bad coding practices.

This implies that the use of the old API may raise reliability
and maintenance issues. Figure 1 shows an example of depre-
cated APIs due to security vulnerability.

For Java programs, developers often annotate
‘@Deprecated’ on each code element (e.g., classes or
methods) if it is necessary to suggest stopping the use of
the code element. This give a chance for developers to
change their applications before permanently removing the

Fig. 1: Example of deprecated APIs due to security vulnera-
bility.

deprecated APIs [5], [7]. In addition, sufficient information
for the deprecated API should be provided for the library
users to update their applications. Otherwise, the API users
cannot update their applications according to the new library
due to insufficient documentation [1]. In particular, API
documents are known as one of the most effective methods
to resolve deprecated API since it can convey the intentions
why API developers deprecated the APIs [6].

In this paper, we hypothesize that the quality of API
documents may affect the resolution of deprecated APIs.
We define the quality of API documentation with respect to
deprecated APIs. This illustrates what kind of information
is provided for application developers such as alternative
APIs, code examples, and rationale to help the resolution of
deprecated API.

Three research questions are defined to examine our as-
sumptions as follows:

• RQ1. How frequently APIs are deprecated?
• RQ2. How sufficient information is provided for the

deprecated API?
• RQ3. How does API document quality have an influ-

ence on the resolution of deprecated APIs?

To obtain an answer for each research question, we built
a tool support, D-API Miner, to automatically identify newly
introduced/resolved/unresolved deprecated APIs. By using the
tool, we have investigated 260 deprecated APIs (including
classes, methods, and attributes) of eight Java libraries with
48 releases, and also analyzed 2,126 usages of the deprecated
APIs in 249 applications to recognize the causal relationship
between the quality of API documentation and the resolution
of the deprecated API.

2014 21st Asia-Pacific Software Engineering Conference

1530-1362/14 $31.00 © 2014 IEEE

DOI 10.1109/APSEC.2014.87

27

TABLE I: Subjects for our study (Dur.=Duration in month,
Rel=Releases).

Subject Description Versions Dur. # of Rel.

Guava Collection Framework 10 – 17 31 7
Lucene Search,Index 1.4.3 – 4.8.1 84 42
Hadoop Distributed file system 1.0.3 – 1.2.1 9 6
Spring Application Framework 2.5.6 – 4.0.0 19 25
Jetty Web server and servlet 7.6.14 – 9.0.0 8 23

ActiveMQ Messaging service 5.6 – 5.9 24 3
Accumulo Column based database 1.3.0 – 1.6.0 23 9

Camel SOA message middleware 1.6.4 – 2.13.0 40 48

This investigation reveals that 1) 3.6 APIs of the libraries
were monthly deprecated on average. 2) Only 61% of API
documents provide alternative APIs for deprecated APIs, while
examples for the alternative APIs and the rationale for the
deprecation were rarely provided. 3) 62% of deprecated API
usages in applications were resolved when alternative APIs
were provided in the API document. However, only 39% of
deprecated APIs were resolved in the applications when the
alternative APIs are not introduced in the document.

This paper is structured as follows: Section II illustrates the
further details of the research questions and the corresponding
study methods. Section III shows the results of the study as
an answer of each research question. After discussing related
work on API changes in Section IV, we conclude this paper
in Section V.

II. RESEARCH QUESTIONS & METHODS

This section describes our research questions on the doc-
umentation quality of deprecated APIs and experiment design
to handle each question.

RQ1: How frequently APIs are deprecated?

Before discussing the correlation between the document
quality and the deprecated APIs, it is necessary to figure out
the frequency of API deprecation. Although few of previous
studies [2], [4] reported the frequency of API changes in
java.awt, javax.swing and Android, investigating the number
of deprecated APIs in our subjects is prerequisite.

We investigate eight Java libraries as shown in Table I.
These are selected because they are popular open-source
projects and provide publicly available source code. Versions
in the table indicates an version interval used for our study, and
the Duration column represents the number of months for the
interval. # of Releases shows the number of individual major
or minor version releases used for our study.

RQ2: How sufficient information is provided for the deprecated
API?

This question addresses which aspect defines the quality of
API documents for deprecated APIs. In this study, we manually
investigate the documentation quality of the subjects shown
in Table I with respect to the following aspects:

• Does the API document provide alternative APIs for
deprecated APIs?

• Does the API document include any example for the
alternative APIs?

• Does the API document provide a detailed guide to
resolve deprecated APIs by using an alternative API?

• Does the API document present the reason of the
deprecation?

TABLE II: Client applications examined in our study. For each
library API, we collected several client applications to answer
our research questions.

API Library Client Applications

Guava Jcbi-xml, Accumulo-core, Jcloud-component core
Lucene-core Jackrabbit-core, Camel lucene, Elasticsearch, Solr-core
Hadoop-core Hadoop-mapreduce, Nutch, Camel-hbase, Hadoop-NFS
Spring-core Spring-AOP, Spring-beans, Spring-context, Spring-JDBC
Jetty-server Jetty-Asynchronous HTTP client, Jetty-SPDY, Jetty-test webapp

ActiveMQ-core OpenEJB-container core, OpenEJB-TomEE, ServiceMix-core
Accumulo-core Accumulo-wikisearch query, Accumulo-server base

Camel-core Camel-FTP, Camel-EJB, Camel-geocoder, Camel-gson

TABLE III: Monthly average number of added/removed dep-
recated APIs (numbers in parentheses are standard deviation).

Libraries New Removed Sum Total First Release

Guava 5.8 3.7 9.5 295 Sep. 2009
Lucene-core 1.3 0.5 1.8 150 Oct. 2000
Hadoop-core 0.2 0.0 0.2 2 Mar. 2012
Spring-core 1.5 6.1 7.6 144 Dec. 2005
Jetty-server 2.5 6.5 9.0 72 Apr. 2009

ActiveMQ-core 0.8 0.6 1.5 35 Nov. 2005
Accumulo-core 11.9 9.2 21.1 486 Jul. 2012

Camel-core 4.6 2.0 6.6 263 Jun. 2007

Sum(standard deviation) 3.6 (3.9) 3.6 (3.4) 7.2 1447

RQ3: How does API document quality have an influence on
the resolution of deprecated APIs?

This research question examines the correlation between
the quality of API documentation and the resolution of dep-
recated APIs. We analyze 249 pairs of library APIs (listed in
Table I) and client applications for these research questions.
For each library APIs, we collected several client applications
as shown in Table II.

III. RESULTS

RQ1: How frequently APIs are deprecated?

We investigated the API documents of the eight libraries
with 163 releases and summarized the results in Table III.
In the table, the New and Removed columns are the num-
ber of newly introduced/removed deprecated APIs from the
previous on average, respectively. We compared two adjacent
versions of each subject library to count the New and Removed
deprecated APIs. If a new deprecated API is discovered after
comparing with the previous release, we counted it as a newly
introduced deprecated API. Thus, deprecated APIs already
contained in the previous release were ignored. In addition,
when the API is discovered in the previous release but not
found in the next release, we counted it as a removed dep-
recated API. At last, all discoveries are averaged by dividing
it by months (Duration) to see its trend. Projecting the result
in monthly average is valuable because the interval between
releases of a library is considerably different each other.

As shown in Table III, on average, 3.6 APIs with 3.9
standard deviation become newly deprecated and 3.6 APIs
with 3.4 standard deviation are removed every month. After
examining the causes of the difference, we figured out it
is strongly related to the first release date of each library.
According to the table, the number of the deprecated API
is getting smaller as the library is released on the earlier
date. Therefore, Lucene-core and ActiveMQ-core has the least
number of the deprecated API, which can be considered as
the most stable. On the other hand, Accumulo-core, Guava and
Jetty-server have relatively high deprecated APIs. Interestingly,

28

TABLE IV: Amount of provided information of newly
added deprecated API (Alt=Alternative, Smpl=Sample Code,
Migr=Migration Guide, Rsn=Reason).

Libraries New Alt Smpl Migr Rsn Alt/New Rsn/New

Guava 180 110 0 0 18 0.61 0.10
Lucene-core 110 57 0 0 5 0.52 0.05
Hadoop-core 2 2 0 0 0 1.00 0.00
Spring-core 29 2 0 0 0 0.07 0.00
Jetty-server 20 13 0 0 0 0.65 0.00

ActiveMQ-core 20 17 0 0 2 0.85 0.10
Accumulo-core 274 219 1 0 16 0.80 0.06

Camel-core 185 80 0 0 2 0.43 0.01

820 500 1 0 43 0.61 0.05

Hadoop-core has very smaller number of deprecation though it
is recently released. It is because it is almost not newly released
after the first release. The result can be also interpreted that
the library APIs may generate 7.2 causes every month that the
applications should be updated according to the depreciated
APIs.

RQ2: How sufficient information is provided for the deprecated
API?

In order to address this question, we analyzed the content
of the API documents for the newly introduced deprecated
APIs in the previous research question (see the New column
in Table III). As the removed API cannot be found in the recent
API document, it is excluded for analyzing the quality of the
API documents. For the newly introduced deprecated APIs,
we counted the number of alternative APIs, sample codes,
migration guidelines and deprecation reason of them.

Table IV shows the results of the API document analysis.
The first New column indicates the total number of deprecated
APIs discovered in the RQ1 (e.g., 5.8× 31 months = 179.8 ≈
180 for Guava). When the document provides the alternative
classes, methods or attributes for the deprecation, we counted it
as an Alternative. Others are similarly measured by checking
if the item exists in the API documents, we counted it. In
addition, the proportion of the Alternative and Reason of all
newly introduced deprecated APIs are computed at the last two
columns.

The result shows that 61% of API documents for the depre-
cated APIs offered at least one alternative API. This indicates
that the developers must figure out appropriate alternative APIs
for the 39% deprecated APIs without the support of API
documents. Unfortunately, most of the API documents do not
provide a sample code and a migration guide for deprecated
APIs as shown in Table IV. We guess that the reason is caused
by the fact that the Java API specification, which is the origin
of API specification of Java world, does not provide sample
codes or guidelines, and many API documents adopt their
documentation styles from the Java API specification.

RQ3. How much does API document quality have an influence
on application’s code update?

To answer this research question, we collected pairs of
an API library and a client application that are co-changed
simultaneously as shown in Figure 2(a). For every version-up
of a client application and library, there might have deprecated
API usages. In the new client application, there would have
three kinds of deprecated API usages which are generated from
old library, new library, or added functionality (Figure 2(b)).

TABLE V: Impact of existence of alternative APIs in client ap-
plications. The number of deprecated APIs without duplicates
are shown in parentheses.

Libraries

generated

API usage
resolved

API usage
unresolved
API usage

Guava 4 (4) 0 (0) 4 (4)
Lucene-core 119 (74) 48 (36) 71 (38)

Hadoop-common 3 (0) 1 (0) 2 (0)
Hadoop-core 1 (1) 0 (0) 1 (1)
Spring-core 13 (4) 10 (3) 3 (1)
Jetty-server 1 (0) 1 (0) 0 (0)

ActiveMQ-core 1 (1) 0 (0) 1 (1)
Accumulo-core 76 (64) 58 (50) 18 (13)

Camel-core 42 (21) 22 (15) 20 (6)

260 (169) 140 (104) 120 (64)

We consider the deprecated API usage of second one as
indicated by the grey part of Figure 2(b).

Table V represents the impact of the existence of alternative
APIs to client applications. The other factor such as Reason
are not shown in the table as no significant correlation is
available for them. The generated deprecated API usage (the
second column) is the number of new introduced deprecated
APIs usages when a client developer upgrades to a new
version of an API library. The resolved deprecated API usage
(the third column) is the number of API usages removed
in a new version of client applications. This implies that
client developers resolved the deprecated APIs. Unresolved
deprecated API usage (the fourth column) is the number of
remaining deprecated on a new version of client applications.

We counted the number of unique deprecated APIs, which
implies that no duplicate was allowed. In addition, we decide
the unresolved deprecated APIs if any of the unique deprecated
APIs remaining in a new version of client applications. We
found 260 generated deprecated APIs when their API libraries
were changed and 120 deprecated APIs remained unresolved.
The numbers in parentheses represent the number of APIs that
has alternative API. Figure 3 shows the ratio of the study result.
Figure 3(a) indicates that 75% of resolved APIs have alter-
native APIs, whereas unresolved APIs have 53%. Figure 3(b)
indicates 62% resolved in client applications among deprecated
APIs having an alternative API. On the other hand, only 39%
of non-alternative APIs. This survey shows us the importance
of the existence of alternative API. Alternative API is one of
the essential aids of changing their code.

(a) Target client & library

(b) Definition of newly introduced
Deprecated API

Fig. 2: Study method for RQ3.

29

deprecated API with alternative

deprecated API without alternative

Resolved API usage Unresolved API usage

75% 53%

25%

47%

(a) Proportion of alternative APIs against
resolved/unresolved deprecated APIs.

resolved API usage
unresolved API usage

Deprecated API with alternative Deprecated API without alternative

62%

39%38%

61%

(b) Proportion of resolved APIs against whether alternative APIs
are available or not.

Fig. 3: Comparison the proportion of resolved and unresolved APIs with respect to whether alternative APIs are available or not.

IV. RELATED WORK

Other researchers have conducted surveys on side effect in
accordance with API evolution. McDonnell et al. [4] analyzed
the change pattern of android API and they investigated change
period and increasing rate of the number of bugs in client
application used android API. According to this paper, client
developers have taken 36 weeks to apply 100% of the new
API and API that change more frequently causes more bugs.
Espinha et al. [1] performed a study to identify the reason
why the web client library is rarely changed. According
to this research, the client developers do not change their
code when they update library due to poor documentation,
no evolution standard, short deprecated period. Because of
those reasons, they argue that the changing standards of web
library APIs required. Linares-Vasquez et al. [3] reported on
a study of mobile based API change pattern and how often
the discussion of the API used in mobile software occurred
on Stackoverflow depends on their change pattern. This paper
shows that frequently changing APIs make developer actively
discussed and deleting public method generates more relevant
and discussed question in the developer community.

V. CONCLUSION

In this paper, we assumed that the quality of API doc-
uments may affect the resolution of deprecated APIs. Then
we set up three questions about our hypothesis. To obtain the
answers of the three questions, we selected nine Java based
libraries. First, we investigated the variation of deprecated
APIs. Through the investigation, we found that 7.2 deprecated
APIs are added and removed on average every month. Sec-
ond, we counted the number of supporting information for
deprecation. According to the result, API documents revealed
61% of deprecated APIs offer alternative code and only 5%
of APIs explained the reason why these APIs are deprecated.
Additionally, most of APIs do not provide sample code and
evolution example. Third, we classified the client code using
deprecated API as existence of alternatives and we counted the
resolution rate in each case. Through our survey, if an alter-
native API is available in API documents, 62% of deprecated
API usages were resolved, while only 39% of deprecated API
usages were resolved if there is no alternative API supported.
More 20% of resolution rate improvement occurred on the
basis of the presence of the alternative API. Our findings can

inform when the APIs are changed, alternative API will be
significantly helpful for changing client applications.

Based on the results reported in this paper, we can conclude
that API developers often deprecate APIs without sufficient
information. However, deprecated API usages are more likely
to be resolved once alternative APIs are provided in API
documents. This encourages API developers to specify further
details such as alternative APIs when they mark deprecated
APIs. In addition, we can design a technique to automate the
resolution of deprecated APIs if alternative APIs are available
in API documents.

VI. ACKNOWLEDGEMENT

This research was supported by Next-Generation Informa-
tion Computing Development Program through the National
Research Foundation of Korea(NRF) funded by the Ministry of
Science, ICT & Future Planning (NRF-2014M3C4A7030505)

REFERENCES

[1] T. Espinha, A. Zaidman, and H.-G. Gross. Web api growing pains:
Stories from client developers and their code. In proceedings of the 2014
Software Evolution Week - IEEE Conference on Software Maintenance,
Reengineering and Reverse Engineering (CSMR-WCRE), pages 84–93,
Feb 2014.

[2] D. Hou and X. Yao. Exploring the intent behind api evolution: A case
study. In Proceedings of the 2011 18th Working Conference on Reverse
Engineering, pages 131–140, Oct 2011.

[3] M. Linares-Vásquez, G. Bavota, M. Di Penta, R. Oliveto, and D. Poshy-
vanyk. How do api changes trigger stack overflow discussions? a study
on the android sdk. In proceedings of the 22nd International Conference
on Program Comprehension, pages 83–94. ACM, 2014.

[4] T. McDonnell, B. Ray, and Miryung Kim. An empirical study of api
stability and adoption in the android ecosystem. In proceedings of
the 2013 29th IEEE International Conference on Software Maintenance
(ICSM), pages 70–79, Sept 2013.

[5] Oracle. How and when to deprecate apis, June 2014.

[6] C. Parnin and C. Treude. Measuring api documentation on the web. In
Proceedings of the 2nd International Workshop on Web 2.0 for Software
Engineering, Web2SE ’11, pages 25–30, New York, NY, USA, 2011.
ACM.

[7] J. H. Perkins. Automatically generating refactorings to support api
evolution. In proceedings of the 6th ACM SIGPLAN-SIGSOFT Workshop
on Program Analysis for Software Tools and Engineering, PASTE ’05,
pages 111–114, New York, NY, USA, 2005. ACM.

[8] Z. Xing and E. Stroulia. Api-evolution support with diff-catchup. IEEE
Transactions on Software Engineering, 33(12):818–836, Dec 2007.

30

